The Hammered Hammerheads
Fisheries Dependent and Independent Analyses of Endangered Hammerheads in the MesoAmerican Reef

Rachel Graham, Ivy Baremore, Dan Castellanos
MarAlliance, 32 Coconut Drive/PO Box 283, San Pedro, Belize. e: rachel@maralliance.org

Introduction
Hammerhead species, notably Scalloped Sphyraena lewini and Great S. mokarran have seen dramatic declines in population sizes (Baum 2003) in due to both overexploitation and low survivorship following capture (Pierce et al. 2001). Limited data exist on the status of hammerhead notably outside of developed countries. Recent listing on Appendix II of CITES now requires signatories to develop non-detriments findings for three hammerhead species listed as Endangered. These compiled data suggest that hammerheads will require a region-wide approach to management in the MesoAmerican Reef, notably the restriction of net and longline use.

Study Aims
• Create a baseline for large hammerhead species in Belize as input to the National Plan of Action for Sharks and the CITES Non-Detriment Findings
• Assess abundance, diversity, demography and distribution of S. lewini and S. mokarran
• Determine threats to and conservation opportunities for hammerheads in Belize.

Methods
• Stratified sampling approach to establish permanent sampling stations across three habitat types throughout Belize.
• In-water transects (UVG): 1 km long x 4 transectors, relative abundance and diversity, density (8/km²)
• Baits remote underwater videos: 1kg bait, 60 minute video, MaxN, CPUE
• Scientific longlines: 500m, 50 gangions, circle hooks, standard bait, CPUE
• Opportunistic landings data collected: images, species, total length, sex, gear, area fished
• Fisher surveys: catch, gear, seasonality of fishing, perception of populations/species

Results
Using fisheries-independent and -dependent methods, data on hammerheads gathered from 2006-2015 throughout Belize reveal low catch per unit effort using transects, mid-water longlines and baited remote underwater video (BRUV) installations. Captures by fishery-independent BRUVs and longlines were dominated by great hammerheads (S. mokarran), whereas fisheries data reveal predominance of scalloped hammerheads (S. lewini).

Landings data collected over 18 fishing days in February 2015 from one artisanal fishing boat using nets and based at a single hidden landing site in Belize yielded 26 hammerheads (25 juveniles, 1 adult). Extrapolated out to the site’s four boats and 56 days of landings provided an estimate of 639 hammerheads landed. Traditional fishers surveyed about the fishery and status of hammerheads highlighted a preference for the use of nets and for the captures of hammerheads due to the value of their fins. Fishers further perceived declines in abundance and distributional shifts of hammerheads in Belize.

Study Aims
Fisheries-independent monitoring yields low abundance of hammerheads

Study Aims
Fisheries-dependent landings yields high capture of hammerheads

Acknowledgements
We thank the many fishers who haveworked with us in the field and the Fisheries Department for allowing us to work in their areas. We are grateful to the IUCN, Save Our Species, the Whitney Trust for Nature, the Mitchel Petersen Foundation, and the Oak Foundation for supporting our work. We thank Don Felix for images and measurements of sharks landed in Belize and Fundación Mundo Azul for facilitating transfer of equipment so that the fishers take images and for work in several landings.

Conclusions
• Our study suggests that fisheries-independent monitoring (FIM) using the current set of methods (UVC, BRUV and hanging/midwater longlines) underestimates abundances of hammerhead species.
• FIM overestimates the relative abundance of Sphyraena mokarran over S. lewini due to survey focus on reef associated habitats whereas S. lewini are distributed across deeper mud-bottom and pelagic habitats.
• Fisheries dependent monitoring (FDM) assessments yield highest hammerhead abundance due to high effort and use of gears with high catchability index (nets and bottom longlines) located at night.
• Sampling measures with the highest effectiveness also yield high animal mortality due to high capture myopathy of hammerheads.
• Data collection for hammerheads represents tradeoffs of data and survey risks versus mortality.
• Harmonized regional legislation and reduction or ban in the use of nets and longlines is needed to restore the country and region’s hammerhead populations.