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1. INTRODUCTION

Whale sharks Rhincodon typus Smith, 1828 are the 
world’s largest extant fish, and despite their size, they 
are filter feeders (Rowat & Brooks 2012). Whale 

sharks boast a broad distribution across all major tem-
perate and tropical seas (Rowat & Brooks 2012), likely 
driven by periodic pulses in prey availability (Hey-
man et al. 2001, Graham & Roberts 2007, de la Parra-
Venegas et al. 2011, McKinney et al. 2012, Hoffmayer 
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et al. 2021). However, basic whale shark ecology re -
mains poorly understood, including their spatial and 
temporal distribution outside of well-studied aggre-
gation sites (Rowat & Brooks 2012). As a highly 
migratory species capable of crossing international 
maritime boundaries (Castro et al. 2007, Graham 
2007, Hueter et al. 2013, Sequeira et al. 2014) and div-
ing into deep oceanic habitats (Graham et al. 2006, 
Tyminski et al. 2015, Andrzejaczek et al. 2022), char-
acterizing whale shark movement ecology remains 
challenging. Extensive research has focused on sev-
eral known seasonal aggregation sites where whale 
sharks can be reliably encountered, including the 
Yucatan Peninsula, Mexico (de la Parra-Venegas et al. 
2011), Ewing Bank, USA (Hoffmayer et al. 2021), 
Gladden Split, Belize (Heyman et al. 2001), Utila, 
Honduras (Fox et al. 2013), Nosy Be, Madagascar 
(Diamant et al. 2021), Gulf of Aden, Djibouti (Rowat et 
al. 2011, Boldrocchi et al. 2020), the Red Sea 
(Berumen et al. 2014, Cochran et al. 2019), the Ara-
bian Gulf (Robinson et al. 2013), and Ningaloo Reef, 
Western Australia (Norman & Stevens 2007). These 
well studied sites are primarily dominated by juve-
niles and subadults (Graham et al. 2006, Rowat & 
Brooks 2012, Norman et al. 2017), leaving the distri-
bution and ecology of adult whale sharks poorly 
understood. 

Historically, information on the ecology of large 
pelagic animals, including whale sharks, has been con-
strained to sparse observations that are limited geo-
graphically. For example, the majority of our knowl-
edge on whale shark ecology comes from surface 
observations in coastal waters. Yet, recent evidence 
from electronic archival tags suggests that the major-
ity of their lives are spent offshore in epipelagic envi-
ronments and include dives to depths well below the 
euphotic zone to as deep as 2500 m (Hoffmayer et al. 
2021). Electronic tagging of whale sharks in the Gulf 
of Mexico have reported movements across the basin 
(Hueter et al. 2013, Hoffmayer et al. 2021) and 
throughout the northwest Caribbean Sea and into the 
North (Daye et al. 2024) and South Atlantic Ocean 
(Graham et al. 2006, Gifford et al. 2007, Hueter et 
al. 2013). 

Nevertheless, electronic tags have not fully re -
solved gaps in our knowledge of whale shark spatial 
ecology in the northwest Atlantic Ocean (NWA). The 
US east coast is recognized as part of the worldwide 
distribution of whale sharks by the International 
Union for Conservation of Nature (IUCN) (Pierce & 
Norman 2016), and there have been extensive survey 
efforts in the Gulf of Mexico (Hueter et al. 2013, Hoff-
mayer et al. 2021, Daye et al. 2024). Yet, observations 

of whale sharks in the NWA are limited, which has 
precluded the ability for population level character-
izations of whale shark distributions in the NWA be -
yond aggregation sites. 

Species distribution models (SDMs) can harness 
disparate data sources, such as opportunistic citizen 
science and scientific surveys, to help fill gaps in our 
understanding of whale shark ecology in the region. 
Here, we synthesize whale shark occurrence data 
from multiple sources to more fully describe whale 
shark distribution in the NWA. We align these obser-
vations with a suite of dynamic oceanographic vari-
ables in an SDM framework to identify seasonal char-
acteristics of whale shark habitat use in the region. 
These results represent a significant advance in char-
acterizing whale shark distribution, harnessing op -
portunistic data with a broader spatiotemporal extent 
to complement existing telemetry and survey data. 
Our findings provide a foundational understanding of 
the species’ spatial and temporal distribution in the 
NWA. These results also serve as a baseline to assess 
potential distributional shifts under climate change 
and have broad implications for the international 
management of this IUCN Red List Endangered spe-
cies (Pierce & Norman 2016). 

2.  MATERIALS AND METHODS 

2.1.  Species occurrence data: aggregated sightings 

We collated data from 8 databases and >14 distinct 
data collection efforts (Fig. 1, Table 1; Table S1 in the 
Supplement at www.int-res.com/articles/suppl/m766
p091_supp.pdf) that consisted of aerial and ship-
board surveys, environmental impact surveys, and 
opportunistic sightings (e.g. Wildbook for Whale 
Sharks, https://www.sharkbook.ai). Aerial, shipboard, 
and en vironmental impact observations included 
cetacean abundance surveys completed by the 
National Oceanic and Atmospheric Administration 
(NOAA) Southeast Fisheries Science Center (Rapucci 
et al. 2017), the North Atlantic Right Whale Con -
sortium (2023), offshore wind planning surveys such 
as those contracted by the New York State Energy 
Research and Development Authority (Normandeau 
Associates & APEM Inc. 2016), and underwater 
weapon testing by the United States Department of 
the Navy (McAlarney et al. 2016, Cotter 2019, Foley 
et al. 2019), among others (see Table 1 and Table S1 for 
details on data origins and data collection methods). 

In addition to these multiple survey efforts, we 
compiled opportunistic sightings from 3 databases: 
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the Global Biodiversity Information Facility (GBIF 
2023), the Ocean Biodiversity Information System 
(OBIS 2023), and Wildbook for Whale Sharks (Holm-
berg et al. 2008, Norman et al. 2017). The Global Bio-
diversity Information Facility and Ocean Biodiversity 
In formation System are international open-access 
databases hosting a mix of survey and citizen science 
records. For these databases, sightings were obtained 
by querying ‘Rhincodon typus,’ and then download-
ing associated occurrences for additional quality con-
trol. Wildbook for Whale Sharks is a citizen science 
database that uses photo identification to document 
individual whale shark sightings (Holmberg et al. 
2008, Norman et al. 2017). Most observations con-
tained geographic coordinates and a timestamp; 
however, for those that did not have spatial coordi-
nates, we completed manual filtering of these oc -
currences by reviewing notes associated with the 
sightings and photo/video footage, if applicable, and 
used these to assign a location (see Text S1 for full 
details). The resulting spatial extent of aggregated 
observations spanned the northernmost sighting in 
the Bay of Fundy (Turnbull & Randell 2006), south 
along the eastern USA to the North Brazil Current off 
the northern coast of South America, including the 
Caribbean Sea and the Gulf of Mexico. Data cleaning, 

such as the removal of locations on land, duplicate 
records, and non-whale shark occurrences, was per-
formed in R (version 4.3.1, R Core Team 2023) using 
the packages ‘tidyverse’ (Wickham et al. 2019), ‘raster’ 
(Hijmans 2023), ‘terra’ (Hijmans 2024), and ‘sf’ (Pe -
bes ma 2018). 

2.2.  Species occurrence data: model preparation 

Aggregated sightings data were used to construct 
an SDM. We considered all occurrence data as pres-
ence-only. Although some true absence data were 
reported from systematic surveys, very few data 
sources, including opportunistic or citizen science 
surveys, reported absences and/or effort (Table 1; 
Table S1). To address this, we generated pseudo -
absences as a consistent method to proxy absence 
across the varying data sets in the study region (sensu 
Barbet-Massin et al. 2012, Hazen et al. 2021, Braun et 
al. 2023; Section 2.3). To account for the spatial auto-
correlation and bias inherent in the presence data set, 
we thinned presence observations to ensure a maxi-
mum of 1 event per 0.01° grid cell for each month in a 
given year. Together, sampling pseudoabsences from 
the study region and systematically thinning pres-

93

Fig. 1. Aggregated whale shark Rhincodon typus sightings from 1933 to 2023 (n = 2453 total occurrences) by sighting origin. (a) 
Entire study area (100–40°W, 5–50°N), (b) northeast USA, (c) northern Gulf of Mexico, and aggregations from (d) the Yucatan  

Peninsula, (e) Belize, and (f) Honduras. See Table 1 and Table S1 for additional information on occurrence origins
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ence observations have been demonstrated to consis-
tently yield robust machine-learning based models 
when working with geographically biased data and/
or data sets with unknown or variable effort and rep-
resentation of species’ absences (Fourcade et al. 2014, 
Braun et al. 2023a). Finally, given that whale sharks 
are presumed to primarily transit, rather than forage, 
in the open ocean (Arrowsmith et al. 2021), presences 
were further spatially limited to on-shelf and near-
shelf regions that included exclusive economic zones 
(EEZs) across the study region, inclusive of the entire 
Gulf of Mexico basin. Data for which coordinates 
were manually assigned, such as the above-described 
Wildbook for Whale Sharks occurrences, were with-
held from SDM training and were strictly used to 
describe the distribution of whale sharks in the NWA. 

2.3.  Pseudoabsence generation 

Pseudoabsences were used to represent locations 
that were available to whale sharks. Using pseudo -
absences has been found to improve model predic-
tions compared to presence-only SDMs (Barbet-Mas-
sin et al. 2012). Here, pseudoabsences were generated 
via background sampling, without replacement, and 
assigned a random date from the corresponding spe-
cies-presence data set, as recommended for previous 
and similar modeling efforts (Hazen et al. 2021, Braun 
et al. 2023a). Previous studies of presence-only model 
performance identified that using pseudoabsences 
developed with background sampling yielded model 
predictions that most closely aligned with presence–
absence models (Barbet-Massin et al. 2012, Hazen et 
al. 2021, Braun et al. 2023a). Quality control of pseudo -
absences followed the same routines as used for 
presences, spatially limiting to regions within EEZs 
and spatially filtering to ensure only 1 pseudo absence 
for each 0.1°grid cell (~10 km) for a given month of 
a year. Pseudoabsences were then randomly sub-
 sampled to a 1:1 ratio of presences to pseudo -
absences, in line with previous recommendations for 
SDMs (Barbet-Massin et al. 2012, Brodie et al. 2022). 

2.4.  Oceanographic data 

The resulting model training data (presence and 
pseudoabsences) were filtered to match the time-
frame of the Global Ocean Physics Reanalysis (GLO-
RYS,  Copernicus Marine Environmental Monitoring 
Service; Lellouche et al. 2018), a data-assimilating 
ocean model with 50 vertical levels at 1/12° horizon-

tal resolution. Environmental variables were extracted 
from the oceanographic model for the as sociated 
year–month of each sighting and pseudoabsence 
observation. Environmental data consisted of 7 
dynamic surface variables: sea surface temperature 
(SST) in °C, sea surface salinity (SSS) in PSU, sea sur-
face height (SSH) in m, their corresponding standard 
deviations (SST_sd; SSS_sd; SSH_sd) calculated 
over a 0.25° square, eddy kinetic energy (EKE) in m s–2, 
1 subsurface dynamic variable, mixed layer depth 
(MLD) in m, and 2 static variables, bathymetry 
(ETOPO1 obtained from www.ngdc.noaa.gov/mgg/
global/global.html, coarsened to 1/12°) in m, and 
rugosity (calculated as the spatial standard deviation 
of bathymetry over a 0.25° square) in m. 

2.5.  Model design 

We used boosted regression trees (BRTs) to con-
struct the SDMs. BRTs were selected as the occur-
rence data exhibited some sampling effort (Phillips et 
al. 2009) and previous investigations have revealed 
that correcting for sampling bias in presence-only 
frameworks, e.g. MaxEnt, can be unreliable (Syfert et 
al. 2013, Fourcade et al. 2014). BRTs, in contrast, are 
widely used to model distributions of highly mi -
gratory species (Hazen et al. 2018, Abrahms et al. 
2019, Brodie et al. 2022, Braun et al. 2023a,b, Lezama-
Ochoa et al. 2024), and are robust to non-linear rela-
tionships and collinearity among variables interac-
tions (Elith et al. 2008, Farchadi et al. 2024). 

Model training data were sourced from the com-
plete 1:1 presence to pseudoabsence data set drawn 
from the entire study area (100–40°W, 5–50°N). 
BRTs generated in this study adopted the same prop-
erties as those in Braun et al. (2023a), which used a 
Bernoulli family, 2000 fixed trees with a learning rate 
of 0.05, bag fraction of 0.75, tree complexity of 5, and 
k-fold partition of k = 10 (where data are randomly 
subsampled into 10 subsamples, and the model trains 
on 9 of the subsamples and uses the last subsample for 
testing). To assess spatial uncertainty, BRTs were 
bootstrapped 100 times by sampling (with replace-
ment) 2010 presences and 2010 pseudoabsences from 
the training data set to maintain the 1:1 presence to 
pseudoabsence ratio. Fitted models were predicted to 
monthly environmental data during the study period 
(1993–2023), then averaged by season. Seasons were 
defined as winter (December–February), spring 
(March–May), summer (June–August), and autumn 
(September–November). Model predictions assess 
habitat suitability for whale sharks on a continuous 
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scale from 0 to 1, where 1 is associated with higher 
suitability. Presence data included in model training 
were collected between January 1993 and August 
2023, and complete environmental data were avail-
able from GLORYS. Presence data were excluded if 
they preceded the temporal span of the oceano-
graphic model GLORYS (before January 1993), 
lacked complete environmental data from GLORYS, 
or had manually assigned coordinates. 

2.6.  Model performance 

We evaluated model performance using 3 metrics: 
explanatory power, predictive skill, and ecological 
realism (see Braun et al. 2023a). Explanatory power, 
represented by R2, quantified the ability of the 
explanatory variables in the model to capture vari-
ability observed in the training data set. Predictive 
skill was assessed via the area under the receiving 
operating characteristic curve (AUC) and true skill 
statistic (TSS), which assess the ability of the model to 
discriminate between presence and absence (Norberg 
et al. 2019) and the accuracy of model predictions 
compared to random chance, respectively. TSS, inde-
pendent of species prevalence, has been found to yield 
more conservative and ecologically realistic values 
compared to other predictive skill metrics (Shabani et 
al. 2018). Further, spatial uncertainty in model pre-
dictions was assessed by determining the standard 
error of bootstrapped models. Resulting SDMs were 
predicted monthly to the spatial extent of the data. 
We determined the models’ median predicted habitat 
suitability for presences and pseudo absences against 
respective training data to discern ecological realism. 
All ecological realism analyses de termined a pres-
ence to occur when suitability ex ceeded the 75% 
quantile and an absence when suitability was less 
than the 25% quantile (Braun et al. 2023a). 

3.  RESULTS 

3.1.  Aggregated sightings 

In total, 2453 whale shark sightings were collected 
from 1933 to 2023 (Fig. 1a, Table 1; Table S1) and after 
quality control and thinning, a total of 2010 observa-
tions made between 1993 and 2023 were retained as 
training data for the SDM. Quality control filtering 
involved removing 43 observations that occurred 
before the availability of the oceanographic model 
(pre-January 1993), 86 observations that were missing 

temporal information, and 282 that were manually 
assigned an approximate location from supplemental 
comments in the Wildbook for Whale Sharks data-
base (https://www.sharkbook.ai). Among all avail-
able sightings (n = 2453), a total of 69 sightings 
occurred north of 30° N in the US EEZ, including in 
the Mid-Atlantic Bight and near George’s Bank off-
shore from Cape Cod, Massachusetts (n = 50; Fig. 1b). 
Extensive sightings of whale sharks occurred within 
the northern Gulf of Mexico (n = 983; Fig. 1c). Nearly 
half of the total sightings (n = 1211; 49.7%) originated 
from known aggregation sites offshore of the Yucatan 
Peninsula, Mexico (n = 652; Fig. 1c), Belize (n = 223; 
Fig. 1d), and Honduras (n = 359; Fig. 1e). Temporal 
information was available for 2395 of the 2453 total 
sightings. Of these sightings, 182 occurred during 
winter (Fig. 2a), 564 in spring (Fig. 2b), 1239 in summer 
(Fig. 2c), and 367 in autumn (Fig. 2d), representing a 
gradual northward shift from lower latitudes in winter 
to higher latitudes in summer (Fig. 2e). 

3.2.  Model performance 

Model performance was robust across explanatory 
power (mean R2 = 0.76; range = 0.73–0.78) and pre-
dictive skill: mean AUC = 0.99 (0.98–0.99), mean 
TSS = 0.89 (0.86–0.91). The ability of the model to 
yield ecologically realistic predictions, represented by 
the mean of median model-predicted habitat suitabil-
ities at known presences and pseudoabsences (where 
a value closer to 1 is desirable for presences and a 
value closer to 0 is desirable for pseudoabsences), was 
0.94 (0.93–0.95) and 0.03 (0.03–0.04), respectively. 
Among environmental drivers included in the model 
(Fig. S1), bathymetry explained the most deviance 
(mean = 44.9%, range = 40.2–47.8%; Table 2, Fig. 3; 
Fig. S2), followed by SST (20.5%, 17.1–23.2%), SSH 
(16.1%, 13.3–19.7%), and rugosity (7.0%, 4.7–10.0%). 
Habitat suitability increased with bottom depth 
<1500 m, SST >25°C, and negative SSH values, indi-
cating use of habitats shoreward of the Loop Current 
and Gulf Stream, which are the primary gradients in 
SSH in the region (Fig. 3). The remaining environ-
mental variables exhibited relatively minimal in -
fluence (<3% each) on habitat suitability (Fig. S2). 

3.3.  Habitat suitability: monthly and  
seasonal patterns 

Generally, the summer season yielded increased 
amounts of suitable habitat compared to the winter 
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(Figs. 4 & 5a; Figs. S3 & S4). The models predicted 
high habitat suitability along the US east coast from 
southern Florida to Cape Hatteras, North Carolina, 
throughout the year (Fig. 4a; Fig. S4). Starting in 
June, increased habitat suitability extended north-
ward of Cape Hatteras (Figs. 2b & 4b; Fig. S4), reach-
ing the Northeast Canyons offshore from Cape Cod, 
Massachusetts, by July (Figs. 2c, 4c, & 5a,b). 
Enhanced habitat suitability in the region remained 
for the summer and began to decrease in September 

(Fig. 4d; Fig. S3). By November, the northern bound-
ary of suitable habitat retreated southward again 
toward Cape Hatteras. Regardless of season, the 
models predicted suitable habitat year-round in the 
southeastern USA along the continental shelf edge 
(Fig. 4). 

Overall, the models predicted high suitability 
during all seasons in the southern Gulf of Mexico 
and at known aggregation sites further south, such 
as the Yucatan Peninsula and regions offshore 
Belize and Honduras (Fig. 4; Fig. S3). The northern 
Gulf of Mexico exhibited moderately suitable 
habitat during the winter months (Figs. 4a & 5a,d), 
and predicted suitability increased starting in 
March (Figs 4b & 5a,e) through early summer. 
By  May, the northern Gulf of Mexico exhibited 
highly suitable habitat, lasting through the summer 
months (Fig. 4c) before declining again in October 
(Fig. 4d). Nevertheless, suitable habitat was avail-
able year-round in the northern Gulf of Mexico. 
Generally, the model predicted increased suitabil-
ity in nearshore relative  to offshore habitats. Simi-
larly, known aggre ga tions around the Yucatan Pen-
insula (Fig. 5a,f,g), off Belize (Fig. 5a,h,i), and off 
Honduras (Fig. 5a,j,k) were characterized by in -
creased suitability during summer compared to the 
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Environmental variable                      Relative influence (%) 
 
Bathymetry (m)                                            44.9 (40.2–47.8) 
Sea surface temperature (°C)                  20.5 (17.1–23.2) 
Sea surface height (m)                               16.1 (13.3–19.7) 
Rugosity (m)                                                   7.0 (4.7–10.0) 
Sea surface height SD (m)                          2.9 (1.9–4.7) 
Eddy kinetic energy (m s–2)                       2.7 (1.7–4.2) 
Mixed layer depth (m)                                 1.8 (0.9–3.4) 
Sea surface salinity (PSU)                           2.0 (1.0–3.0) 
Sea surface salinity SD (PSU)                    1.3 (0.7–2.4) 
Sea surface temperature SD (°C)              0.8 (0.2–1.4)

Table 2. Mean relative influence of each environmental vari-
able in bootstrapped sightings species distribution model.  

Ranges are given in parentheses

Fig. 2. Whale shark Rhincodon typus occurrences with available date (n = 2395 from 1933 to 2023) by (a) winter, (b) spring, (c)  
summer, and (d) autumn. (e) Seasonal latitudinal distributions
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winter; however, conditions were suitable year-
round (Fig. 4). 

Regions of greatest uncertainty varied depending 
on the time of year. In winter, uncertainty was mod-
erate throughout the study region, decreasing 
along the US east coast north of Cape Hatteras 
(Fig. 6a; Fig. S5). Uncertainty increased in the 
northern Gulf of Mexico and the southern US east 
coast in spring but remained moderate off Belize 
and Honduras (Fig. 6b; Fig. S5) and low in the 
Northeast Canyons region offshore Cape Cod. Dur-
ing summer, the regional patterns of uncertainty 
were reversed, with relatively low uncertainty in 
the northern Gulf of Mexico and offshore aggrega-
tion sites but moderate uncertainty along the US 
east coast, peaking in the Northeast Canyons 
region (Fig. 6c; Fig. S5). In autumn, trends observed 
in summer continued with higher uncertainty in the 
northern Gulf of Mexico, Yucatan Peninsula, Belize, 
and Honduras regions (Fig. 6d; Fig. S5). 

4.  DISCUSSION 

4.1.  Whale shark habitat use 

Our results indicate that whale sharks are sea-
sonally distributed throughout much of the NWA 
(Fig. 1a), not only within known coastal aggregations 
but also in oceanic regions along the US east coast as 
far north as Atlantic Canada. Many of the sightings 
located in oceanic regions revealed several whale 
shark observations beyond aggregation sites in the 
NWA, particularly along the US east coast that have 
not been previously reported in the primary litera-
ture. Further, occurrence data and SDM revealed a 
northward shift in the distribution of sightings and 
extensive suitable habitat in the summer and autumn 
months to as far north as 44°N, a region where there 
has been only a single published occurrence (i.e. Bay 
of Fundy) (Turnbull & Randell 2006). The records pre-
sented herein indicate a substantially greater use of 
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Fig. 3. Response curves and relative influence of the 4 most influential environmental drivers of suitable whale shark habitat 
derived from bootstrapped boosted regression tree model. Ribbons represent 95% confidence intervals. Rug marks on the plot  

represent presence (black, bottom) and pseudoabsence (grey, top) points
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high latitudes than previously identified, with 69 total 
records north of 30°N between 1974 and 2023 
(Fig. 1b). These presences likely represent migratory 
movements to the northern edge of whale shark dis-
tribution in the region. Indeed, 52 of these presences 
were located north of Cape Hatteras (35.2°N). Of the 
69 presences above 30°N, 67 had available temporal 
information: 7 observations occurred between 1974 
and 1998, and 60 observations occurred between 1999 
and 2023. Of these sightings, presences largely oc -
curred in the summer and autumn seasons, with 4 
occurrences during winter, 6 in spring, 46 in summer, 
and 11 in autumn. 

Presence data revealed that whale shark occurrence 
across the region throughout the year was character-
ized by seasonal peaks in habitat suitability at aggre-
gation sites and within oceanic regions (Fig. 2). These 
areas of elevated suitability predictions largely aligned 
with previous site-specific investigations of whale 
shark ecology. For example, the model predicted 
higher suitability offshore Utila, Honduras, in winter 

and spring (Fig. 2a,b,e) in line with ob-
servations from Fox et al. (2013). Simi-
larly, increased predicted suitability 
offshore Gladden Split, Belize, in winter 
and spring (Fig. 2ab,e) reflect observa-
tions reported by Heyman et al. (2001) 
and Graham & Roberts (2007). Areas 
of  increased predicted suitability on 
Ewing Bank and offshore of the Yucatan 
Peninsula in summer (Fig. 2c,e) agree 
with McKinney et al. (2012), Hoffmayer 
et al. (2021, preprint https://doi.org/
10.7287/peerj.preprints.85v1), and de 
la Parra-Venegas et al. (2011). Within 
the Gulf of Mexico, habitat suitability 
predictions and occurrence data re-
vealed that whale shark occurrence 
peaked in the northern Gulf of Mexico 
in the summer (Figs. 2c, 4c, & 5d,e) and 
autumn (Figs. 2d & 4d), consistent with 
previous work investigating seasonal 
movements in the region (Burks et al. 
2006, Hueter et al. 2013, Hoffmayer et 
al. 2021). Seasonal peaks in suitability 
in the northern Gulf of Mexico, there-
fore, aligned with seasonal increases 
in suitability along the US east coast 
(Figs. 2e & 4c,d). Together, the simulta-
neous occurrence of extensive suitable 
habitat during the summer and autumn 
in the northern Gulf of Mexico and 
NWA suggest seasonal habitat use of 

each by different whale sharks, potentially by different 
demographic groups (e.g. age classes) among the 2 re-
gions (Hoffmayer et al. 2021). 

The presence of multiple spatiotemporal assem-
blages of whale sharks across seasons may reflect 
the ability of larger individuals to capitalize on sea-
sonally warm and productive northern habitats dur-
ing summer months. While the opportunistic nature 
of the sightings data precluded robust size or age 
estimates (Callaghan et al. 2021), our field obser -
vations suggest that both male and female whale 
sharks are observed in northern latitudes during 
summer (e.g. offshore from Cape Cod; C. Braun 
pers. obs.). These individuals are typically >8 m 
and thus are presumably mature adults based on 
size at maturity reported by Norman & Stevens 
(2007). In contrast, known aggregation sites, includ-
ing Ewing Bank and areas offshore Honduras, 
Belize, and the Yucatan Peninsula, are typically 
comprised of juvenile males (Heyman et al. 2001, 
de la Parra-Venegas et al. 2011, Hueter et al. 2013, 
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Fig. 4. Mean of bootstrapped model-predicted seasonal (averaged monthly; 
e.g. winter: December, January, February) habitat suitability from 1993 to 
2023. Presence data used to train the model are overlaid in red (n = 2010). A  

monthly version of this figure is shown in Fig. S4

A
ut

ho
r c

op
y



Mar Ecol Prog Ser 766: 91–106, 2025

McKinney et al. 2017), while previous 
work suggests that juvenile and adult 
whale sharks of both sexes use open 
ocean habitat in the northern Gulf of 
Mexico (Hoffmayer et al. 2021). In -
deed, the occurrence of multiple dis-
tinct assemblages by age across the 
Gulf of Mexico and NWA are reflec-
tive of previous whale shark observa-
tions. Adults have been found to 
occupy deeper open water (Ketchum 
et al. 2013, Afonso et al. 2014, Ramí-
rez-Macías et al. 2017, Hoffmayer et 
al. 2021). Conversely, coastal aggre-
gation sites are typically composed 
of juveniles (Rowat & Brooks 2012, 
Cochran et al. 2019, Hoffmayer et al. 
2021). While drivers of ontogenetic 
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Fig. 5. (a) Difference in habitat suitability between summer (June, July, August) and winter (December, January, February) pre-
dictions, where red and blue are associated with increased and decreased levels of habitat suitability, respectively. Insets dis-
play predicted habitat suitability for summer (top) and winter (bottom) seasons in the (b,c) Northeast Canyons region, (d,e)  

northern Gulf of Mexico, (f,g) Yucatan Peninsula, (h,i) Belize, and (j,k) Honduras. 200 m isobath is shown in all plots

 
Fig. 6. Standard error of bootstrapped pre-
dicted habitat suitability by season, calcu-
lated as the standard deviation of all predic-
tions for months included in each season, 
from 1993 to 2023. Presence data used to  

train the model are in white (n = 2010)
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changes in habitat use among whale sharks are 
debated, they are thought to include dietary shifts 
(Borrell et al. 2011, Hueter et al. 2013, Hearn et al. 
2016) and reproductive re quirements (Ramírez-
Macías et al. 2017). Thus, while the exact drivers of 
ontogenetic changes in whale shark habitat use 
remain elusive, the observation of simultaneous yet 
geographically distinct spatiotemporal assemblages 
suggests that distributional changes with age are 
occurring in the NWA. 

Across both coastal aggregation sites and offshore 
oceanic regions, the observed occurrence of whale 
sharks and corresponding high predicted habitat suit-
ability suggest that strong bathymetric gradients, 
particularly continental shelf edges, are important 
habitats for whale sharks in the region (Figs. 2, 4, & 5). 
Whale sharks are well-known to occur in areas with 
dynamic oceanography, such as regions of oceanic 
mixing. For example, in regions of oceanic upwelling, 
such as offshore the Galapagos Islands (Poortvliet et 
al. 2015), whale sharks have been observed in associ-
ation with frontal gradient systems, with 80–100% of 
positions occurring within upwelling habitats (Ryan 
et al. 2017). In the mid-North Atlantic Ocean within 
the Azores archipelago, increased sightings of whale 
sharks occur in regions with greater bathymetric 
slope, such as near seamounts (Afonso et al. 2014). 
Similar to other frontal zones that often aggregate 
zooplankton and forage fishes (Genin et al. 2005, 
Lévy et al. 2012), relatively smaller-scale shelf edge 
upwelling in the Gulf of Mexico has been speculated 
to be important habitat for whale sharks (McKinney 
et al. 2012, Hueter et al. 2013, Hoffmayer et al. 2021). 
Whale sharks have also been observed throughout 
the Meso-American Barrier Reef system (Graham 
2007, Fox et al. 2013), where meanders of the Carib-
bean Current in the Western Caribbean Sea and the 
formation of eddies may impact biological activities 
along the coasts of Mexico, Belize, Guatemala, and 
Honduras (Ezer et al. 2005, Lin et al. 2012). 

Regions of high predicted habitat suitability for 
whale sharks in oceanic portions of the NWA, particu-
larly in the northern extent of the Mid-Atlantic Bight 
offshore from Cape Cod, also coincide with strong 
bathymetric gradients. While the Mid-Atlantic Bight 
continental shelf is not considered a major upwelling 
region (Poortvliet et al. 2015), it is biologically produc-
tive (Zhang et al. 2023) due to nutrient-rich water that 
originates from land or the Arctic (Chapman & Beards-
ley 1989) and strong frontal gradients that differ in 
physical and biogeochemical properties (Hales et al. 
2009). In the NWA, mesoscale eddies and meanders of 
the Gulf Stream interact with southwestward water 

from the Labrador Sea, creating smaller-scale mixing 
dynamics (Seidov et al. 2016) and are known to 
interact with the edge of the continental shelf, driving 
upwelling as high as 100 m d–1 (Forsyth et al. 2022). 
Similar small-scale dynamics, including continental 
shelf-edge upwelling and frontal convergence zones, 
have also been observed in the Gulf of Mexico (Zhang 
& Hu 2021, Qu et al. 2022). Thus, larger, mature whale 
sharks may be targeting these seasonally productive 
habitats at the northern extent of the Mid-Atlantic 
Bight, representing a divergence in available suitable 
habitat compared to tropical aggregation sites that are 
primarily occupied by juveniles and sub-adults. 

Other dynamics, including local productivity events, 
may further explain the observed seasonal patterns 
in whale shark occurrences throughout the NWA. 
While we did not investigate the co-occurrence of 
prey species and food availability, observations in -
cluded in this study encompass a range of sightings 
from locations where whale sharks were observed in 
association with prey aggregations to observations 
that were likely not linked to foraging opportunities. 
At well-studied aggregation sites, such as offshore 
from the Yucatan Peninsula, whale shark occurrence 
is likely driven by feeding on dense groupings of zoo-
plankton in shallower waters, as well as on pelagic 
fish eggs farther offshore in more nutrient-poor 
regions (de la Parra-Venegas et al. 2011). Offshore 
Belize, whale sharks were observed in association 
with mass spawning events of Lutjanus cyanopterus 
and L. jocu (Heyman et al. 2001, Graham & Roberts 
2007). In the northern Gulf of Mexico, whale sharks 
have been observed near the Mississippi River plume, 
where discharge creates conducive environments for 
plankton (McKinney et al. 2012, Hoffmayer et al. 
2021), and at Ewing Bank, which is a spawning site for 
little tunny Euthynnus alletteratus (Hoffmayer et al. 
2021, preprint https://doi.org/10.7287/peerj.preprints.
85v1). While exact drivers of whale shark occurrence 
across the broad expanse of the NWA in this study 
remain ambiguous, local oceanographic features 
such as small-scale upwelling and episodic produc-
tivity events likely facilitate suitable conditions de -
pending on geographic region, age, and sex of whale 
sharks. 

4.2.  Model performance 

As a highly mobile species, research concerning 
whale sharks is frequently effort-intensive and spatio-
temporally limited. Occurrences were concentrated 
in regions with strong ecotourism industries, such as 
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offshore from the Yucatan Peninsula and Belize 
(Figs. 2 & 4), and uncertainties in model predictions 
fluctuated in conjunction with spatiotemporal varia-
tions in presence observations (Fig. 6; Fig S5). Spatial 
and temporal biases are common in occurrence data 
for highly migratory species, particularly when the 
primary observation mode relies on heavily skewed 
effort such as ecotourism (Blázquez et al. 2024) or 
fishing (Braun et al. 2023a, Karp et al. 2023, Liang et 
al. 2023). Recent work has indicated that disparate 
data types can be combined, such as in this study, to 
build more robust SDMs that draw on the broader 
distribution of multiple data sets (Braun et al. 2023a). 
In some cases, diverse data types can also be lever-
aged to make model predictions outside the spatial 
and/or temporal bounds of the training data (Stirling 
et al. 2016, Braun et al. 2023a). While the latest 
advances in ecological modeling suggest that model-
based data integration may provide more ecologically 
realistic and skillful predictions under novel environ-
mental conditions (such as marine heatwaves, Far-
chadi et al. in press), computational demand for these 
complex models is orders of magnitude higher than 
traditional approaches (Farchadi et al. 2025), high-
lighting the importance of model frameworks tai-
lored to specific research objectives. 

The conspicuous nature of whale sharks and associ-
ated ecotourism and offshore resource industries (e.g. 
fisheries, energy production) in certain regions make 
them a particularly suitable species for opportunistic 
sightings data collection through the use of citizen 
science (Andrzejaczek et al. 2016, Bargnesi et al. 
2020, Barry et al. 2023). While these data can be 
readily used in SDMs (Farmer et al. 2022), the under-
lying spatial and temporal biases in effort are critical 
considerations in model development and associated 
inference (Hertzog et al. 2014). For example, most of 
the occurrences in this study originated from near-
shore regions on the continental shelf and aggrega-
tion sites offshore of Belize, Honduras, and the Yuca-
tan Peninsula at the surface. This spatial, and thus 
environmental, bias in the training data can directly 
impact predicted suitability via inflated suitability 
predictions in nearshore, shallow habitats. To address 
these biases, we used methodological choices in line 
with existing literature, including spatial coarsening 
of presences and pseudo-absences, development of 
pseudoabsences with background sampling (Braun et 
al. 2023a), and using equal numbers of presences and 
pseudoabsences (Barbet-Massin et al. 2012, Hazen et 
al. 2021). While the model indicated that nearshore 
habitats were consistently more suitable than open-
ocean environments, model predictions captured and 

communicated seasonally suitable offshore habitats 
beyond aggregation sites and year-round suitable 
habitat at aggregation sites. 

Future whale shark distribution analyses will bene-
fit from more spatially and demographically repre-
sentative data (DeAngelis & Yurek 2017, Williamson 
et al. 2022). The inclusion of satellite and acoustic 
telemetry data (Cagua et al. 2015, Hays et al. 2019, 
Shidqi et al. 2024) would help address sampling 
biases (Braun et al. 2023a) and are better equipped to 
characterize suitable habitat at depth and in the open 
ocean. Explicit representation of specific size or age 
classes may also yield more realistic results for spe-
cies with expected habitat partitioning between 
adults and juveniles (e.g. Druon et al. 2022). When 
the data allow, size-specific modeling will be an 
important next step for whale sharks, as juveniles are 
hypothesized to primarily occupy nearshore aggrega-
tion sites, and adults to favor pelagic habitats (Acuña-
Marrero et al. 2014, Macena & Hazin 2016). 

The current study represents a valuable first step in 
leveraging opportunistic sightings data to better 
understand seasonality and broad-scale distribution 
of whale sharks in the NWA. These results underscore 
previously unknown pelagic regions conducive to 
high seasonal whale shark habitat suitability, particu-
larly along the US east coast at the northern edge of 
the Mid-Atlantic Bight, identify extensive suitable 
habitat beyond known aggregations in the north Gulf 
of Mexico (Hoffmayer et al. 2021), and reaffirm year-
round highly suitable conditions at known aggrega-
tion sites (Heyman et al. 2001, de la Parra-Venegas et 
al. 2011). Pulse stressors, like marine heat waves, and 
ongoing long-term changes in the NWA have already 
been shown to redistribute highly migratory species 
(Braun et al. 2023b, Farchadi et al. 2024). These ongo-
ing changes highlight the importance of SDM frame-
works, like the one presented here, that can account 
for the fluid and complex nature of changing ocean 
conditions and distributions of highly migratory spe-
cies as new data become available (Lewison et al. 
2015, Maxwell et al. 2015, Hazen et al. 2018). 

5.  CONCLUSIONS 

Here, we assembled the most extensive occurrence 
data set for whale sharks in the NWA to understand 
their movement ecology and seasonality (Sequeira et 
al. 2014, Pierce & Norman, 2016). We used an SDM 
to link diverse observation data with environmental 
characteristics. The model indicated that whale shark 
habitat suitability was largely driven by bathymetry, 
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SST, and SSH, which led to several areas of high, 
model-predicted habitat suitability outside of known 
aggregation sites. We present the first quantitative 
evidence of model-predicted suitable oceanic hab-
itats at temperate latitudes in the NWA, such as along 
the continental shelf edge offshore from Cape Cod. 
Given rapid climate-induced changes to ocean eco-
systems in this region, additional research is needed 
to understand the functional role and importance of 
these seasonal habitats within the broader life history 
and ecology of whale sharks in the NWA. 
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